BAT421: 3D printing of solid-state Li batteries

VTO AMR 2021, Jun 25, 2021

Jianchao Ye (PI), Erika Ramos, Siwei Liang, Marissa Wood, Materials Science Division, Lawrence Livermore National Laboratory

Overview:

lithium batteries"

Timeline: Nov. 2018 to Feb 2022. 80% completion

Budget: Total \$1.125M FY21: \$375K

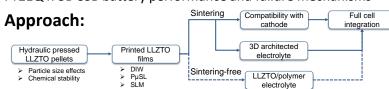
Barriers: (Performance) The integration of ceramic solid state electrolyte into solid state batteries is challenging due to the brittleness, air-sensitivity, and poor solid-solid contact issues. **Partner:** Simulation group led by Brandon C. Wood (LLNL) on "Integrated multiscale model for design of robust 3D solid-state

Impact: Unlike the well-established roll-to-roll fabrication of conventional Li-ion batteries, the processing of SSBs is unique due to the brittleness of solid-state electrolytes (SSEs). Commercial SSE separators are ultrathick, which limits power and energy densities. Free-standing ultrathin ceramic separators are mechanically fragile.

Strategies: 3D printing enables multi-component integration and interfacial engineering including morphological, chemical and mechanical control.

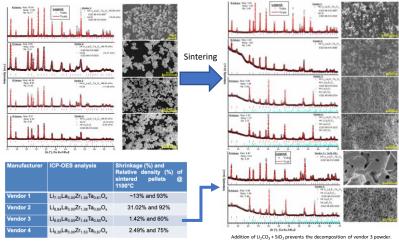
Objectives: 1) Tuning microstructures of 3D printed SSE separators. 2) Process compatibility with cathode printing. 3) 3D printing of sintering-free SSE separators.

FY21 Milestones:

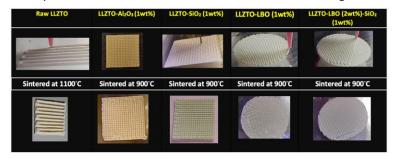

FY21Q1: Evaluation of new LLZTO feedstocks (complete)

FY21Q2: Battery performance based on 3D architected LLZTO

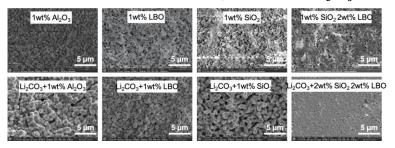
(complete)

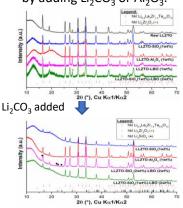

FY21Q3: Battery performance based on CPE (in progress)

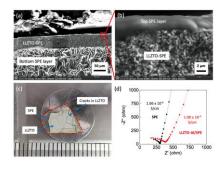
FY21Q4: 3D SSB battery performance and failure mechanisms

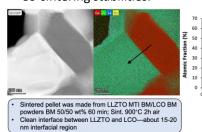


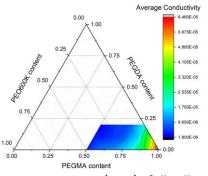
Accomplishment to date - FY21

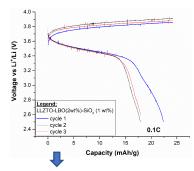

• Evaluation of new LLZTO feedstocks. (Vendor 2 wins out)


3D-printed LLZTO structures before and after sintering

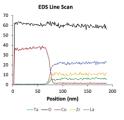

Batter densification was achieved by the addition of Li₂CO₃.


LZO phase was prevented by adding Li_2CO_3 or Al_2O_3 .


Porous LLZTO film was infilled with SPE to enhance mechanical robustness, ionic conductivity, and contact with electrodes.


Co-sintering stabilities.

 PEGDA/PEGMA/PEO based solid polymer electrolytes were developed and tested at RT.



First NMC/CPE/Li full cell

Possible issues

- PVDF may block porous channel in LLZTO separator
 SPE may not be in direct contact with NMC leading to
- SPE may not be in direct contact with NMC leading to higher interfacial impedance
- Impurity phase LLZTO reduces ionic conductivity
- · PEO/PEG may not be stable enough against NMC
- Very high NMC loading (29 mg/cm²)

This presentation does not contain any proprietary, confidential, or otherwise restricted information